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ABSTRACT

This report deals with the theory and design of antennas printed

on or embedded in a grounded substrate. A theoretical approach is

implemented which accounts accurately for the physical effects involved

including surface waves. The Green's function has been obtained by

synthesizing the fields of Hertzian dipoles which are oriented in

arbitrary directions and which are printed on or embedded in the sub-

strate. By considering Pocklington's integral equation with proper

choice of expansion and testing functions, solution for current dis-

tribution and input impedance is obtained by matrix inversion.

As an example, thin-ty-pe printed and embedded circuit antennas

with symmetric or asvmznetric excitation are considered. Antenna

currents, input impedance, bandwidth and resonant resistance arE

obtained for a variety of antenna arrange--ents. A serious amount Of

effort is alsc being placed in evaluating the importance of higher

order surface wave modes which are determined by the relative dielec-

tric constant and the thickness of thE substrate.



CHAPTER I

Monolithic or hybrid integrated circuits are finding increased use

in the microwave, millimeter and far infrared frequency ranges. There-

fore the development of antennas which are amenable to integration with

other printed circuit elements is of significant technological impor-

tance.

Printed circuit (microstrip) antennas were apparently introduced

first in the early 1950's [1], [2]. However, their inherent advantages

(conformalitv to a given surface, light weight, negligible volume, in-

expensiveness), were not put to widespread practice until the 1970's

[3] - [20]. The need to integrate microwave components, including

antennas, necessitated the development of substrate materials with th

appropriate thermal, mechanical and electrical properties in the

desired frequency ranges [21] - [23]. The environmental and technolc-

gical constraints having been resolved, the task remained to develo7

analytical methods which would provide accurate desin. criteria.

Extensive efforts have been expended to provide models wlic predict

correctly the electrical characteristics of microstrip antennas. Tires

methods rely either on a transmission line model of the printed circui:

antenna 13] - (7] or an open resonator model [], - [2,. The former

approach gives a heuristic explanation of thE radiation properties of

th( antenna whl e the latter provides a morc ancurate prediction of thE

anterna characteristics. Both models app- maairn to the dominant

resonator mode ahd their accuracy is question'&-e for higher order

. 7



r!.,;,t,, ially becaus( t1,t do n,, i,r'coumt fur th. excitation of

surface waves.

Surface waves are important con tributors to the printed circuit

antenna current distribution as well as input impedance characteristics

(24]. In addition, since surface modes decay as the inverse square root

of distance from their source they can be significant to mutual imped-

ance computation [25], a calculation of importance in phased array de-

sign. It has been established that regardless of how thin the substrate

is, the dominant surface wave mode is always excited. The efficiency of

launching of this mode depends on the thickness of the suhstrate and it.,

dielectric constant. As more energy is trapped in the substrate the

microstrip antenna becomes less efficient. In many applications, such

as in the riilimeter or far infrared region [2 3- [3C1, today's techno- -

ogv providec substrates which are several wavelengths thick. This per-

mits ma.7 surface .odes (TE and TY' to exist in the substrate, further

com. licating the desigr.. These modeE, too, can cause inpairzent of

effic ien:v.

It beco-e! evident fro. this discussion that a the&retica"

approac must be imp~e.-ented which accounts accurate!'.. - t.' physina"

efft-cts in.c, e , includin, surface wave.. Su9. a7 6p..- I..o : eXcIud L

eithEr of the pre'iou.v mentione., tech.iques ane rc:i.s or treatir.g

the Tnicrostrir ele-,nt a. an antenna rathcr tlhnr a. a tran."isn s. ".

line. section or a. a resan.,:cr. Thi requir- t.h tl,, antenna current

integral. ezuat icr.. Th Cree:'s funct ic., i- tY 1 " c a F-t car: be olbtaine"

b" s-.-r the.mi.-inm t.h,( fJeIds cf r n rtr.r d .
'  arc orient ed ir

arbitrary directior. ane whic I art printe. or. th substratc, thus



acco)unt ing properly for all the boundary condit ions pertinent to the

problem.

An analytical solution of the two dimensional Pocklington's inte-

gral equation is precluded due to the immense complexity of the problem.

One must resort to numerical techniques, with the integral equation

discretized and the current distribution obtained by matrix inversion.

A numerical method which has found widespread and successful use for

the solution of Pocklington type integral equations is the method of

moments 124] - [27). It has the disadvantage, like other numerical

techniques, of requiring extensive computing time in some applications,

e.g., in the computation of electromagnetic scattering from objects

large compared to wavelength. For the present application, the Green's

function pertinent to the problem is given by Sommerfeld-type integrals

which require special integration techniques when field and source

points are both on the substrate [24), [25], [31]. At present,

evaluation of these integrals is numerically time-consuming, thus

making the applicability of the method of moments to arbitrarily

shaped planar printed circuit antennas difficult.

In the present work, thin wire-type printed circuit antennas wit*

svmnetric Lr asvmnretric excitation are considered. Thc excitation is

assumed to be caused by a unit voltage generator and the printed wires

are taken to be thin compared to wavelength. Thc azimuthal asvmretry

of the current distribution is assumed tc be a second order effect.

The antenna currents, input iirpedancE, bandwid: and resonant resistance

are obtained for a variety of antenna arrangerents. A serious amount

of effort is aiso being placed ir deterrinin th!c- iportance of hipher-

3



(),.(I , ,,,-face wave mnodc- so' tbat a cot ri ( t trade-off anAlysis of band-

width with substrate thickness can be implemented.



CHAPTER 2

GREEN'S FUNCTION FOR PRINTED/EMBEDDED

DIPOLES AND POCYLINGTON'S INTEGRAL EQUATION

2-1. DERIVATION OF GREEN'S FUNCTION

This chapter presents the development of the Green's Function per-

tinent to the problem of linear antennas printed on or embedded in a

grounded dielectric substrate of thickness b and relative dielectric

constant cr

In order to formulate the Green's function, an elementary hori-

zontal electric dipole (HED) is considered to be at (x', y', -h) as

4shown in Figure 2.1. The assumed time dependence is e j~ and it is

suppressed throughout the report. Maxwell's equations take now the

following forT in region II (z < o)

-d -d+ (2.1)
r o

d . d (2.2)
0

,• = o (2.3)

.. 4
E (

r c

where the superscript d indicates field and source quantities ir th.t

dielectric substrate. The following potential function is now intro-

duced,

-.d =-- -d (2.5)
d k

where will turr, out to bc the Green's functior in. region I. Sin:c

.5 -- .d) , equation (2.5) indicates that (2.3) is satisfied. A

substitution of (2.5) into the curl equa:ior, for E gives the followinc



Az

z=-b

Figure 2.1: HED Embedded in a Grounded

Dielectric SlacD



rv* sul t

Vx (Ed k2 ) = 0 (2.6)

where k2 E 2V o . Since x ( d) 0 it follows thato a r CO

Ed k 2  dvcd (2.7)

with 1d the scalar potential function for region 11. The relationship

between d and G can be obtained by a substitution of (2.5) and (2.7)

into (2.1), i.e.
x x = ( .o d) _2zd _o_° d

2 d d-
k

+ k2 Gd - d (2.8)

Since the curl of G has been defined and, in addition, since G is

arbitrary, one can choose its divergence to be

t - d ,dG d =  (2.9)

which is the Lorentz condition. The wave equation for G can now be

obtained from (2.8) and (2.9) in the form

2 2 d >o d (.07 + k) , = (21022

The Lorentz condition enables one to write in region, II for E and P

the result

= -d 2-.dEd (-T . Cd) k2 Cd (2 1?
9

and H . . . x C( .I-j -.

In a similar manner the electromagnetic field in region~ I is give- bv

= .- • ) + " 0 (2 .l3
0

an-

wlere 1 ic the free space wavenumber, i.E. C, =  r * . is th,

7



C't. uI t ion for rer ion I a,. it sait ie i-s the wave equation

( 2 -+ . .'; (2.15)
o+ k G (

oo
0

for a given current source 3.

The solution which satisfies the wave equation and the appropriate

boundary conditions, in each region of interest, consists of two parts;

the secondary solution which is the solution to the corresponding homo-

geneous equation, and the primary solution which is the particular

solution to the wave equation. The complete solution is therefore

C = Gp + Gs (region 1) (2.16)

and

G p+ (region 11) (2.17)

The existence of the primary solution is strictly related to the pre-

sence of current sources in the region of interest.

For the cases considered here the primary solution has an x-co-

ponent onlv 13 ]~3- given by (see Appendix A)

d f,
G. ----- _0c) e - u z. ._

4-k

wherc

-c, I-C ' Iu= K. - .V1, u = - *.,-
C C

. (= : _ Y , ( _ ) I
and

COS' - -

Due tc th , a ,;-c cf source. in region I t ., s.-ondary components art

P I n'8 "



Cx FM~r~ J 0 M) e Uod(2.19)

0

jw~j0
C - osz e o)~ eod., (2.20)

0

and

d __ d uz d -u
=- 2OS Or !C)[ ~e + O ()e I d (2.21)

Sz 4ik ) o

In the equations above F()), 1(X), 1' d 0), R d0)), C d0(.) and d 0 arez

determined by the boundary conditions at z 0, -b given by:

e d d d
E E E = E, H HB ,- BY H (Z =0) (2.23)

)y V y' x

and

E d= C) F d=.0 (z =-b) (2.24,)

Application of these boundary conditions yields

d (1 C- ))W e ubsinh~u(b-h),
C 0)-- ____ ____-(2.25)

f I(,b) -fl(0 ,b)

= Cd0  e-U (2 .2

d = (u-u) sinhlu(b-h)] ( 2'

u f 11))

Rd ) -u +T d ()e- 2u!b(.F

2r ?i![~-)

2- (2-c s in') u (b-h) 1 c csl i.
T r

f, C.



fI(X,b) = uosinh(ub) + ucosh(ub) (2.31)

f2(X,b) - cr u0cosh(ub) + usinh(ub) (2.32)

With the above expressions substituted in equations (2.18) - (2.22) the

final form of the Green's function is

jW -
G J O(X p)e o sinhtu(b-h)] Ad> (2.33)

nk 0  f (X,b)2 0 1

G ---- (1-C )Cos (P)e-Uoz sinhfu(b-h)cosh(ub) ).2d. (2.34)
2okJ fl(X,b)• f2 (),b)

sinhlu(z+b)]'[ucosh(uh)+u sinh(uh)]
d - o .o _,-

x= f b- _ ) u dX, -b<7<-.

(2.35)

d _ o T sinh[u(b-h)] [ucosh(uz)-uosinh(uz)] ,_ I.,-h,. - __
x 2rk f() ,b u

(2.36)

d o-- - j sinhju(b-h))coshju(z+b)L]2d
G 2  2 (1-r )Cos: 1 00 f , f b) d, (2.37)

For the case of the HE'. on the dielectric interface the Green's function

is given by equations (2.33),(2.34) for region (I), an-" by (.35 .

(2.37) for region (II) with h = 0.

2-2. POCKLINGTON'S INTEGRAL EO.UATIOI:.

It is assuned that the dipole shown in Figurc 2.2 is very thin so

that its radius j IF nucY smaller than thi wvelenth ) in the di-g

electric, i.e.

-,- = 'o1 ,.7 (2 .3E"F' c) r

ZA.



Az

Z=O

Figure 2.2: Wire Dipole Embedded in a

Grounded Dielectric Slab

1~M



I" it is issumed that the current deiiity on the dipole is given by

W) r (2.39)
x x

the integral equation for this problem is

L[

E (xyz) = k2 I + VV]'d (r )- (r dr (2.40)
fo

=d 4

where (r/r ') is the dyadic Green's Function and is given by

Ed I- 'r GiAd - 6.d 4C rr')=C(rlr ') x x + C(rlr ') (2.41)
x z

and L the length of the dipole.

In addition I denotes the ider.factor (unit dyadic) and it has the fort.
A.

-I- + + (2.42)

while

x * x -- + V++z - (2.43)

Equation (2.40) can be rewritten as

id 2 d z'd ;"(;
. G + -- j + xEd(r) f{i(.2_d :-ui 2-- >

Sx x:z

+ (k2G + _: + z

2d ]
C d 2 Cd d 

. "

z : .
2  x x

Fro7 relation (2.44) it is observed that the electric field consists

of three corponents I, Fd and F . However, or.!\- the Fd component
V 7x

enters the integral equation for the current distribution. Fro:

eauation (2.4-') thc Ed corponent is g.ver k"



o L( 2 d a2  d

E d (r) k 2G + -- - + _1 j3 dr (2.45)
x J ax 2  axz x x

It is easily determined now that the x-component of the electric field

for the case h - 0 is as follows:

L2 2
E ) G + - + -- z J dr' (2.46)

x ax 2  x x

d d
with Gx , Gdx' G z Gdz defined previously.

A consideration of the following relationships

z ? d (2.47)
;z x>

and

(2.4F)

leads to

E 6~) 1[.'2Gd + V" (Gd _ d) jd d,' (2.49)

x >2 xx x

C - C G) J dr' (2.52
x ) - x Y

.,

with% Cd , G, giver, by (see Appendix E)

Ge f' (]- ( X.

sinl.,U(z I-)']

0", r-- 0 .- c ' ( ' !

13



CHAPTEI

FORM1'lAT]ON OF THE PROFBIET FOP

}:Uty]:] CAL ANALYSI S

3-1. MYTHOD OF M-OMENTS

The purpose of this chapter is to present the basic principles of

the Method of Moments [35],[37] as well as its application. to the spc-

cific problem of the dipole embedded in a grounded dielectric substrate.

Throughout this chapter, the radius of the dipole is assumed to be

much smaller than the wavelength in the dielectric, so that the current

zna: be assume_' to be distributed uniformly around the cylinder. If one

observes the current distribution from an observation point or. the

cylinder axis thor. the distance between the source and the observatio.

point reduces t>

, ~= [(x - >:'Y- +:--

It is tc bE er-,asi7ed t.at the dipcle or w-r, cvyindcr ic nct

assuM-e- tc be in n.tesin- tin an-' therefcrc th.c sinz:lar::\ whic'.

arise- iT the compitation cf reactantc is oercor wh- hW -r t

ra:'.4-- g-eF t- 7(r .

The unifyir. - conce~t of th nur-erica treatm-nt of inn-::t iz-pe-

dan:e an'- radiatior proble. is t-.( methcd of mo-c-'. Tis ner

apnroail" t( thi' kiT,,' cE nrcec--le- P e' t-t c- a reduction of th

ass-, ia: r." n' cr. .  equp' :iP. t Z F','ste7 2i', ,-: algebraic equa: icnn

ir un ncr - .* T, : unkn'- art usu.', coff i ent s in sore ap-rc,-

priatE exparE oiC: o t.; curren'. distr v.' -



Ti it.nural metbiod of selut ion willI be discussed in the notation

of linear spaces and operators and hence the specific problem studied

here will be put into this notation. The integral equations derived in

Chapter 2 (2.52 and 2.53) can be put into the form of an operator

equation using the concept of linear vector spaces as follows:

L (J) = (E x) (3.1)
op x

with L given byop

fL a xf2k2 -+ CC ) (3.2)

in air and

L C -- C -cG (x-dr) (3.3)op x 2 xx

in,)'he dielectric substrate.

In equatio-n (3.1) (E x) is a known excitation function or source and J

is the unknown current distribution. In addition, to the above it is

necessary to Identify the inner product < J, (E x) >, whicl, is define'x

to satisfy in Hilbert space the following relations:

< ], CXE) > < (E x), > (3':

< aj + E(E x), h > = a <, -h > + E < (E x)h 1, > (3.5~x

< 5*, 5 > >0 if J # 0 (3.,

.0if J= 0

where a, E are scalars; 3 x h 0 and * denotes a coc-1ey conjugate.

The inner product may be in the fort

J, (:,, CE dE (x.32e)
0

ane since
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2  (3.9)

then it can be shcuw easily from equations (3.2)and (3.3) that

Lop (), (Ex ) ,-<J, Lop (Ex) > (3.10)

which means that the integral operator L is self-adjoint. Based on
op

this fact and on the physics of the problem it is concluded (see

Appendix C) that there exists a unique solution to functional equation

(3.1) and therefore the existence of the inverse operator results as a

consequence, i.e.

j-L -I (E ') (3.11)
op x

The procedure for obtaining a solution in the form of equation

(3.11) can be divided into four steps:

1. Expand the unkno,-n vector in a series of basis functions, J n'

spanninz J in the donain of LO.

2. Determine a suitable inner product ane define a set of

weightint functions.

3. Takc the inner products and there.-v for- the ,atrix ecuation.

4. Solve the matrix equation for the unknoJ-. J.

3-2. GALE 'I [," 'S Kri:f

For electromagnetic input impedance and radiation problens a spe-

cialization of the genera, method of monentc iF particularly convenient.

In the firs: o' th( fo-:r stcp above th current distribution functiz,"

J is expanded r. . finite s-rie- of basis fun.tions. i (J  = 1 ... ,

define' ir tlt dor1.:2 of L



-~ '2(3.12)

with 1. E C

Substitution of equation (3.12) into (3.1) yields

L ( ZIj ij (Exx) (3.13)

and, because of the linearity of Lp

.j .2 op .

results.

In the second step a set of weighting functions W k (k =1,..N

is defined which is chosen to be identical with the basis functions i.e.

and then the following inner product is formulated:

This leads to the matrix: equation

J')L L (J(I
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Eqliation (3.16) may be solved by standard matrix inversion techniques

for the unknown current vector [Ji, i.e.,

[J] - Z]-1 I V [3.17)

where [Z] = generalized impedance matrix

[V] = generalized voltage vector

3-3. CHOICE OF BASIS FUNCTIONS

For the numerical solution of a given input impedance problem, one

of the fundamental decisions to be made is the choice of basis functions

J.. Theoretically these are infinitely many sets of basis functions
J

but practically there are only a few which provide an optimum solution

to the trade-off between accuracy and computer time for the specific

proble.. However, it is true that the closer the basis functions J
n

resemble the actual current distribution on the radiator, the better

the convergence and stability of the generalized impedance matri:.

There are two classes of basis functions:

1. The entire-domain basis functions. These are defined and are

non-zero over the entire domain of L except possibly for a
op

countable union of sets with measure zero. They also satisfyv

the boundary conditions for the specific proble-.

2. The sub-&..ain basis functions which are non-zero functions

over parts of the domain. In the case of wire radiators this

consists of dividing the antenna into overlapping or non-over-

lapping sections.

The implementation cf one or the other kind of basis functions

depend& or tl. specific proller. In thc cast o' arbitrarily shape,

radiators the probler can be simplified if sub-domai basis functions



art used to approximate parts of the radiator by N wire segments. Also

in the case of certain geometries (linear dipole, open or closed cir-

cular loop) if the segments representing the radiator are identical

then there is an appreciable reduction in computer time. This is due

to the fact that the formed integrals extend on the sub-domains and not

on the entire domain.

For the problem of the printed/embedded dipole the most appropriate

set of basis functions is found to be of the following form (see Figure

3.1)

- 1 -l ]sink(x'-x+ .- ') 6 (z+h) (31=. x j-I ~ ± + P" -h§....-')

sink J sink' xxx

with

xj-1 <-  X' :E x.
P 3jl (3.19)

0 elsewhere

II
x . S X ' < X ..

and P. (3.2c)

0 elsewherc

These basis functions, together wit!% the inner product defined earlic:.

will be used for the formation of the matrix ecuatirn in the next

section.

3-4. FOR_'TLATION OF THE MATRI: EQUATIO>

As mentioned previously, the choice of basis functions is deter-

mined by man. factors dictated by the proble 7. undcr consideration. For

thE casc of manr,- parallel dipoles printe. on or e.-1edded in. thE d'-

electric, (seE Figure 3.2) the basis functions can be modified s 2 igh 3 ',

tc be of the for.
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X i-I j

w -Ix-

Figure 3.1: Piecewise-Sinusoidal C ur re nts

on aWire Segment



Az

C7-:--2-IX:- (z0O,
Y~2 y=yp2)

-- x

Figure 3.2: Array of Two Dipoles in the

Dielectric Substrate.
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3pq =f(x,x';j) 6(v'-y p) 6Uz'-z q (3.21)

In this case, the current distribution inside a surface surrounding all

the dipoles will be

q- 1 1 pq I pq (3.22)
p q J=N(p,q)+l

By substituting (3.22)into (3.1), and by using (3.2) ane (3.3) it car.

be found that the electric field in air and in the dielectric is as

fol lows:

M ~ I q)- I

p q j="kp,q)-' 0 x

2f

C, sin ,'k d.:'

C *o *.j+l

- k C, cc-', (C -. G X

+ k (C-~, + V C -If - ~~2
Cx X Xj-3 0 .1+1 FC

an?



d M(p, q) -l
x sinkl
p q J=N(p,q)+l x

k Gd sin[k (x'-x. l)]dx' +
-,xj_ 1,

2 fXj+l'dx
+ k2/  Gdsin[k (x J+l-X')]dx'

J.

-2k cos k' (Cd - d)I +X x X' -x.
3j

d d d d
+ k(G - + MC - ,_. .(v'-v ) (z -z*x=j_-1 X x-j+1 l"Ix X'X j, Y '=Xj~l , q(3.24)

The location of the voltage generator deterrines which of these tw:

expressions should be used for the formation of the matrix equation.

For the case of Figure 2, where the excitation is on an erlbedded dipol,

equation (3.24) is substituted into (3.7). By usinF equaticrs (3.3,

(3.15) and (3.22) one can determine in a straightforward manner that th

elements of the generalized irpedance matrix are iv .

[1)2 ,,.-v,) t~z-z ) (z'-: ") A -,
Cv q F

k 2 d: d' •

a= -i, a '
= - i,O k~ c f

23



sin {k a + (xk++l -x)i).

sin {kIt xa' + (Xja+1 -x')I1.

Gd (VI(x-x') + (y-y') 2 ; z; +

Xk+a+l

+ k 11-(2 coskkx+I) f(a')] dx

a=-l,O a'=-l,O,l k+a

sin {k!k a + (Xk++ -

cd ( x,) + ; " z'

-Gd ( 7 ~ 4 (y-y')- ; z"z) (3.25)
j+a (325

ThL matrix equation then takes the final forr

,1%'/pq1  (3.26)

where V kj are the elements of the excitation vector.

For the excitation of the driven dipole show. in Figure 3.2 one

can use a voltage gap generator or a frill of magnetic current

[36] located at the feed point. From these two ways the second one

although it has an exact (or nearly so) model of the physical gap at

the feed point, it complicates the probler especially in the case of

a printed dipole since ha.f of the dipole's cross section is in the

air ane hall embedded ir. tne dielectric. For thirs reason a voltage gat

generator is considered at the feed prin: and all tht elements of the

24



excitation vector become zero except for the one which corresponds to

the infinitesimally thin gap.



CHAPTER 4

EVALUATION OF I'VE SOKIIERFELri TY'PE INTEGRALS

4-1. SING~lLAR POI1NTS AND RELATED SURFAC-EWAVES

As shown in Chapter 3, the elements of the generalized impedance

matrix consist of a summation of double and triple integrals. One of

these integrals is a semi-infinite integration resulting from the

Green's function. The integrand of this integral is an expression of

transcendental functions multiplied by Bessel function of the first-

kind and zero-order. Furthermore this is a Sommerfeld-type integral and

the existence of essential singularities in its integrand necessitates

very careful treatment. In this chapter, the computation of these inte-

grals will be shown explicitly. In addition, the approximat ions employe2

will be justified and an estimation of the error intoduced by these

approximations will be made.

From equation (3.25) it is obvious that all the singularities of

the integrals considered here result fror the Green's function. FurtherT-

more as was shown in Chapter 2, the integrand in th&- se-i-infinitc

integrals is a functio. of the parameter ) throuE the radica>

u = -k~ 
(1.

whicY. are doutle-vauved functions of the co:771lex varia 'li '. Ho'wever,

the sier. of th(- raeical u does not affect th~ sirg'c-valuedness of the

integrals, as thec terms involvinE the radica: i ar, even functicn- of

/.T1,ere-crt , only thie brancl. cut contribu:U, 1-' tlhE radica, u i s

considered.- The choice of the branch- cut iE, n,-*: arlbitrar\y. Its

2 C.



positiou ib determined by singlc-valuv,!ness and convergence of the

integrals, as well as the outgoing wave character of propagation.

At first, by considering the requirement of an outgoing wave it

can be shown (see Appendix D) that the real and imaginary parts of the

integration parameter X must satisfy the following relations

Re[).I >0 (4.3)

Im[] >0 (4.4)

A possible position of the branch cuts governed by these two

relations is shown in Figure 4.1. For a given comple ),, u, can be

written as follows:

u = s • , ' (4.5)

with

'.o 1

/7 = = -- eJ 2 / (4.7)

From (4.6), (4.7) and (4.5) one obtains

u = vrir- e 1 ¢2 ) / (1.E

Fro7 Figure 4.1 it can be observed that. for all in th.c first qua-

drant, the angles and , are both positiv', wit.

0 < ¢< goo + (49
- 1

and

E%, considering (4.9) ane (.2M th7 inequ

+P
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Figure 4.1: Complex Plane Geometry
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This means that both the imaginary part and the real part of the radical

u are positive. Thus the choice of branch cuts as shown in Figure 4.2

satisfies conditions (4.3) and (4.4). This choice also imposes the

following relations:

Re(u) > 0 Im(u O ) > 0 (4.11)

Re(u) > 0 Im(u) > 0 (4.12)

In Chapter 2 it was shown that all the components of the dyadic

Green's function were of the form

fow N(Xbhc)
G(; 4) r d). (4.13)

(i=x,z) r

No,b,h, r ) is a complex function with singularities of order less than

one (at most), while the function D(,b,h,E ) is of the form

DOib'hE r f1 O,b). f2 (),b) (4.14)

or

Dobh'c r f (),b) (4.15)

with fI (X1,b), f2 (X,b) given by

f1 ( .,b) u sinh(ub) + u cosh(ub) (4.1E)

f2 (),,b) - r u cosh(ub) + u sinh(ub) (4.17)

The integrand in equation (4.13) has poles whenever the function

Do,b,h, r) becomes zero or when either one of the functions f1 (,b),

f2 (),,b) become zero. The zeros of these two functions lead to surface-

wave modes. Particularly, the zeros of f (),,b) give rise to TE

surface waves while the zeros of f, (,b) correspond to TY. surface
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waves. Assuming that k, k are real numbers (lossless dielectric)

the roots of equations

u - u coth(ub) (4.18)

and

SU - - u tanh(ub) (4.19)

lie in the strip k° < Re(X) < k and are all real. rraphical solutions

for the roots of these two equations are shown in Figures 4.3 and 4.4

with the circles having radii a given by

a2 = (vc'F-1) (kob)2 (4.20)

From these figures it is obvious that a surface-wave mode exists only

if a is greater than 7-. As k b increases, the number of proper and

improper roots increase continually. The proper roots characterized by

positive real values for u0 and positive imaginary values for u lie on

the proper Riemman sheet while the improper roots, characterized by

negative real values for u0 and positive imaginary values for u, lie

on the improper Riemman sheet. Because of their location, only the

proper roots yield surface wave modes and these have a significant

effect on the input impedance and radiation characteristics of printed

ant ennas.

4-2. NUMERICAL INTEGRATION OF THE INTEGRALS

The integrals in the expression for the elements of the generalized

impedance matrix can be put in the following two forms:

11 = d ¢(x) dx'c(x') Jo(AC f(X,b,c r ) d) (

j k f)jI J (4.21)

and
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TE surface wave I ublcotlubi
modes
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modes

Figure 4.3: Graphical Solution of the
Equation u.b=Iublcotlubi
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x2ldx (x) o(A 2) f(,b,E r) d& 
(4.22)

with fxk

0l [(x-x,)2 + (yy)2] (4.23)

P2 [(x-x.) 2 + (yy,)2] (4.24)

The infinite integration is performed along the real axis and is com-

pleted in two steps:

1) Numerical integration over the interval (0,A] where A satisfies

the relationship coth (/A2 - k2 b) 1 1

2) Analytical evaluation of the tail contribution which is

actually the integration over the path [A,-).

These two integrations will be analyzed separately because they

have to be treated in very different ways.

4-3. INTEGRATION OVER THE INhrERVAL [O,A]

The integrals given by equ. (4.21)and (4.22) are now in the form

I f +dl £xj+1  A

1
1  J x O(x)J dx' o(x') J 0 f(X,bcr) XdX (4.25)

.fk+l 
x

12fx' df 4(x) J o( 2) f(X,b, c) XdX (4.26)

xk

Consider that the function F(,b, r) is given by

Ar
F( ,,B,c) f J0(Xc,) f(X,b,c r ) AdX (4.27)

In order to find the first-order derivative of the function F(;,b,cr)r

with respect to x, both sides of equation (4.27) are differentiated and

the order of integration and differentiation is interchanged, yielding

34
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d F(,'b'c r)d oA d J°0 (A 0

f (X,b,c ) XdX (4.28)

Since P is the distance between the source and the observation point,

given by

= [(x-x,)2 + (y-y,)2] (4.29)

the derivative of this zero-order Bessel function (equation 4.28) can

be written as follows:

d J (;) Jl(IP)
= - x (x-x') (4.30)

dx p

Equations (4.30) and (4.28) result in the following relation:

d F('b'cdx J xx' J(Xc) f(X,b,c )X2dX (4.31)

0

From (4.31) it is obvious that the derivative of F(G,b,c r) with respect

to x can take large values for specific b and E r which in turn in-

creases considerably the error of integration in (4.25) and (4.26).

In order to avoid this undesirable integration error it has been

found necessary to interchange the order of integration so that the

space domain integration can be performed first. Thus, equations (4.25)

and (4.26) take the form

I (A 'C xk+l X~
I 1 =Jd X I f(X,b~c) dx 4(x) dx' o(x') Jo()0 l (4.32)

0xk JXj

12 f d). ) f(,bc) jkx 4(x) Jo(X:2) (4.33)

x×k

Because of the way A has been defined, A is much larger than k.

Therefore as ,. moves from 0 to A, it passes through the values k and

35

-A.



k, causing the radicals u and u to alternate between pure real and pure

0

imaginary values. This fact, as well as the existence of poles between

k and k, make it necessary to divide the integration interval into the

following subintervals:

1) 0 < X < ko: The integration over this interval is performed

numerically, using a modified Romberg-quadrature method [39],

[40] for the integration with respect to L and Gaussian-

quadrature with fixed points [411 for the double and single

x and x'-integrations. The integrals contribute to the

radiation resistance and to the reactive part of the input

impedance.

2) k < X < k: For the integration over this interval a singu-

larity extraction technique is used (see Appendix E) which

transforms the integral into a finite series plus an integral

of a slowly varying function. This finite series gives the

contribution of the surface wave modes and the number of its

terms depends on the thickness of the dielectric as well as

the dielectric constant c

3) k < X < A: Numerical integration is again invoked here in

exactly the same way as it is performed in the first sub-

interval.

4-4. TAIL CONTRIBUTION

In this case the integration with respect to X is extended along

the interval [A, -). The use of the equality

coth (12 - k2 b) 1 for A (4.34)
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simplifies the integrand to a form which involves radicals of u 0 u.

The order of integration is not changed in the integrals (4.21) - (4.22)

but the infinite integration is evaluated analytically by making some

approximations which are found to introduce a negligible error. From

these results the integrations obtained by the method of moments are

computed numerically. A technique of extraction of the fast varying

terms is adopted to obtain better accuracy and to reduce computer time.

Using the relation (4.34) the Green's function as it appears in

Pocklington's Integral Equations (2.52) and (2.53) is given by

Gx(tail) ) e-Uoz eUZ dX z > 0 (4.35)
Juo+u z' 

G(tail) f z u- 1 __ 1 > 0 (4.36)f~tail)) e-U[~ e ij dl -*U +U CrUo #
A 0o z ' < 0

Gd(tail) A [ u + e z dX z,z' <0 (4.37)

2JA0 ,,

fA [e4 -r41 XdX. z,z' <_0 (4.38)

where the factors - and - have been suppressed.2rk 2  2rk 2

Since X > A, with A sufficiently larger than k and k, after appli-

cation of the binomial series expansion to these radicals the tail part

of the integrals can be written as

Gx(tail) 2 - F°  (4.39)
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______) 2 Ii2(tail) - (A) [1-C2(A) r+)[1-c 2 (A)][1-c3(A)l - 0F

(4.40)

G2 d(tail) - I - + f2- F2  (4.41)

X2[1+c 1(A)] ( 12

G d(tail) - 1 1 1 ~ rlEA 1 ~ F4l42l+C (A) 2 (1+c.rT[l+E3(A)1 1 (.2

where

=[(x-x,) 2 + (Yyy)2] (4.43)

F A J (A. LA [ ) Ho(A,) - (Ac,) Hl(k (4.44)

2 2 2 00

R, - [(z+z')2 + 2 [1+E 4 (A)] ] (4.45)

f .R z- z') 2 + 2 R+ 2 4(A) 2 1 (4.46)

F 1 =/ Jo (tc[+c 4 (A)]) e-tlz+z' dt (4.47)

F A2k' t2 C( -t:,-z,
F2 )) e dt (4.48)

The integrals (4.47) and (4.48) are evaluated numerically while

the functions cl(A), C2 (A), c3 (A' and c4 (A) are correction functions

because of the error introduced from the neglected higher order terms

in the binomial expansion. For a value of A approximately equal to
120-4
20 the error is no larger than 10 - 4 of the value of the tail contri-
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bution and it can be neglected.

By substituting these expressions for the tail part of the Green's

function into equations (4.21) and (4.22) and by using a technique for

extraction of the fast varying terms one can show that the integrals

are reduced to a summation of integrals. The integrads are summations

of slowly varying functions and a finite series of logarithmic func-

tions resulting from the integration of the terms 1 1 1and in
R1 R2

equations (4.39) to (4.42).

3

I
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CHAPTER 5

NLERICAL RESULTS

5-1. DESIGN PROCEDURE FOR MICROSTRIP DIPOLES

This chapter presents design procedures for microstrip dipoles

printed on or embedded in the dielectric suuatrate. Numerical compu-

tations have been performed for very thin wire dipoles with a radius

a - 0.0001 o . The dipoles are center-fee by an in phase unit voltage
0

delta gap generator except for one particular case where the dipole is

fed asymmetrically. All the dimensions presented are normalized with

respect to the free space wavelength X . Due to an assumed time

jutdependency of e , inductive reactance is positive in all plots. The

material given here relates the antenna geometry (dipole length, sub-

strate thickness, dielectric constant, dipole-ground plane distance and

feed point location) to antenna characteristics (resonant length, reso-

nant resistance, current distribution and bandwidth). The presentation

of the numerical results is completed in three steps; at first a

dipole printed on the dielectric interface is considered and its

characteristics are discussed in terms of the dielectric constant and

substrate thickness. After that, this dipole is considered as being

embedded in the dielectric and the change in its performance is studied.
b

At the position b' t the dipole characteristics are considered in

terms of the dielectric constant and the substrate thickness and are

compared to the corresponding values for the printed dipole.
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5-2. DIPOLE PRINTED ON THE DIELECTRIC INTERFACE

a. RELATIVE DIELECTRIC CONSTANT VARIATION

One of the most important characteristics of a given dipole is its

input impedance. Figures 5.1, 5.2 and 5.3 show the real and imaginary

parts of the input impedance when the thickness of the dielectric sub-

strate is equal to 0.1016X . The relative dielectric constant with

values of 2, 10 and 35 permits the excitation of one, two and three

surface waves respectively. From these figures as well as additional

data, it has been concluded that, as the relative permitivity increases,

the reactance becomes increasingly capacitive. The indicated trend is

that fewer resonances occur with larger cr. In addition the input

resistance curves show an increasing number of oscillations and a

decreasing maximum value. The latter observation implies less and less

energy radiated into space, i.e. a decrease in the radiation efficiency

of the antenna, since energy is trapped in the dielectric substrate in

the form of surface modes. Figure 5.4 shows how the resonant length

Lr varies as a function of £r" The effect on the resonant length of

each new excited surface wave is expressed as a discontinuity in the

derivative 8r which happens exactly at the transition points.
r

Figure 5.4 is also another interpretation of the decreasing radiation

efficiency of the antenna since Lr decreases with increasing Er.

Figure 5.5 shows the current distribution on a dipole of length L

0.65 Xo with substrate thickness b - 0.1016 Xo and for cr equal to 2,

10 and 35. The increasing Er (from 2 to 35) results in a larger

number of zeros of the current distribution and more electromagnetic

41

-t..--



Rr
(ohms)

* 4000-

2000-
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Figure 5.1: Input Impedance for a Printed

Dipole with (.= 2 and b=0.1016c,

Resonant Length L,=O.38%c
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R
500-

x
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Figure 5.2: Input Impedance for a Printed

Dipole with er= 1 0 and b=O.1016\c

Resonant Length Lr=O.2O5V-



Rr
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5W - R

250-

-250

.1 2 3 .4 5
L(;k.)

Figure 5.3: Input Impedance for a Printed

Dipole with cr= 3 5 and b=0.1016\c

Resonant Length Lr=O.1O25*kc
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Figure 5.5: Current Distribution on a

Printed Dipole with b=O.1016%,

and Length L=.65k,
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energy trapped in the dielectric which again means less radiated power.

b. SUBSTRATE THICKNESS VARIATION

As in section 5.2a, Figures 5.6, 5.7 and 5.8 show the real and

imaginary parts of the input impedance when the relative dielectric

constant is equal to 2.35 while the substrate thickness b takes the

values 0.1016 Xo, 0.25 X and 0.46 X0 causing one, two and three

surface waves respectively to be excited. As the substrate thickness

increases, despite the fact that more surface waves are excited, the

possibility of many resonances is not affected. However, the increasing

substrate thickness makes the resonant length varying as shown in

Figure 5.9. In the region of one surface wave (I) the resonant length

increases, reaches a maximum for b approximately equal to 0.32 Xo

(region II) and continues decreasing as b becomes larger. As in the

case where the dielectric constant changes, here again the effect of

each new excited surface wave on the resonant length tr is expressed

3Lr(Er)
as a step discontinuity in the derivative . The definition

of the bandwidth BW is assuned to be given by

BW = w (5.1)
0'o

where w 2, "1 are the 3dB points of the response of the dipole considered

by its equivalent circuit (see Appendix F). The bandwidth of the dipole

and its resonant resistance as functions of the dielectric constant are

shown in Figures 5.11 and 5.12. In these two figures, the fact that

the bandwidth curve follows in shape the resonant-length curve is quite

interesting. Both the resonant resistance and the bandwidth have their

minimum value at b = 0.38X and their maximum value at b u 0.22X while
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Figure 5.6: Input Impedance for a Printed
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R
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Figure 5.7: Input impedance for a Printed

Dipole with c,=2.35 and bO0.25X\,
Resonant Length L.=O.381X.0
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Figure 5.8: Input Impedance for a Printed

Dipole with cr =2.35 and 0=0.46V

Resonant Length L,=0.3675%0
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Figure 6.9: Resonant Length vs. Substrate
Thickness b for a Printed

Dipole with c,=2.35
1: One Surface Wave

II: Two Surface Waves

IlI: Three Surface Waves
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and Length L=O.65X.
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Figure 5.1 1: Resonant Resistance vs. Substrate

Thickness b for a Printed Dipole
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Figure 5.12: Bandwidth vs.Substrate Thickness

b for a Printed Dipole with

Er=2.35
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the maximum resonant length occurs between these two values. The

current distributions on a dipole of length L - 0.65 X with cr - 2.35

and for b equal to 0.1016 X u.25 Xo and 0.46 X are given in Figure
00 0

5.10. From these figures it can be observed that the increasing number

of surface waves coming from changes in the value of b does not affect

the current distribution so much as it does when cr changes. Here again

larger substrate thickness means more electromagnetic energy trapped in

the dielectric and less radiated.

5-3. DIPOLE EMBEDDED IN THE SUBSTRATE

a. VARIATION OF DIPOLE EMBEDDING POSITION

Figure 5.13 shows the real and imaginary parts of the input impe-

dance of a dipole printed on the dielectric interface with relative

dielectric constant cr = 3.25 and substrate thickness b - 0.1016 X

If the dipole is embedded in the dielectric substrate, the input impe-

dance will change as shown in Figures 5.14, 5.15 and 5.16. From these

figures it can be observed easily that the shape of the curves remains

the same while the maxima and minima are shifted to smaller values of

the dipole length. Figure 5.17 shows the resonant length Lr as a

function of the dipole-ground plane distance. The change in the

current distribution as a dipole of length L - 0.65 Xo is placed closer

to the perfect conductor plane is shown in Figures 5.20 and 5.21 for

four different cases: b' - b, b' I b ' and b' b
1000 3 ndb

where b' is the dipole-ground plane distance. Also Figures 5.18 and

5.19 show the resonant resistance R and the bandwidth BW as functions

of b-b', the distance of the dipole from the air-dielectric interface.
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Figure 5.13 Input Impedance for a Dipole

with Embedding Distance b-b'=O,

f =3.25 and bO0.1O16k,
Resonant Length L,=O.3 2X,
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Figure 5.14: Input Impedance for a Dipole

with Embedding Distance b-be=b,10O

1r =3.25 and b=O.1O l6X,

Resonant Length L.,=O. 2B4OV,
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Figure 5.15: Input impedance for a Dipole

with Embedding Distance b-b'=b/1O

c,=3.25 and b=O.1016\ 0

Resonant Length L,=. 2 53 4 k.
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Figure 5.16: Input Impedance for a Dipole

with Embedding Distance b-b'zbI3

(r= 3 .2 5 and b=0.1016\,

Resonant Length 1r =O.24k\,
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Figure 5.17: Resonant Length vs. Embedding

Distance b-b' for a Dipole with

cr=3 2 5 and b=O.1O16Xc,
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Figure 5.18: Resonant Resistance vs. Embedding

Distance b-b' for a Dipole with

cr=3 .2 5 and b=0.1016\,,
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Figure 5.19: Bandwidth vs. Embedding Distance

b-b' for a Dipole with c,= 3 .25

and b=O.1O lOo
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-0.4 -02 0 0.2 0.4 -2 -1 0 I 2

i.
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Figure 5.20: Current Distribution for a Dipole

Embedded In the Substrate with

(r=3. 2 5 .b-0. 1 0 1 6 and Length L =0.65k

(a): Embedding Distance b-b'=O

(b): Embedding Distance b-b'=bI1O0
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ReCI) In mAs Im(i) In mAs

-0.4 -02 0 0.2 0.4-4 -2 0 2 4

-02 -0.1 0 0.1 0.2 4 2 0 2 4

Figure 5.21: Current Distribution for a Dipole

Embedded In the Substrate with

fr .25,b=O.1016 and Length L=O.65ko

(c): Embedding Distance b-be=b/1O

(d): Embedding Distance b-b P=b/3
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Li ', slope of thesc two curves as well as of the resonant length

curve (Figure 5.17) for small values of b-b' is characterl-tic of the

air-dielectric substrate electrical discontinuity.

b. RELATIVE DIELECTRIC CONSTANT VARIATION

We consider now the dipole shown in Figure 5.22. The thickness of

the dielectric substrate is equal to 0.1016 and when it is combined
0

with c = 2 and Er - 10 it permits the excitation of one and twor

surface waves respectively. The real and imaginary parts of the

input impedance for these two cases are shown in Figures 5.23 and 5.24.

From these figures it can be observed that for the case of two surface

waves, as well as for the case of one surface wave, many resonances are

possible as the length of the dipole increases.

This does not happen when the same dipole is printed on the di-

electric interface. Figure 5.25 shows how the resonant length Lr

varies as a function of E r for three different positions of the dipolE:

a) printed on the interface(l), b) embedded in the substrate at a

distance 1 B (2),and c) B (3)from the ground plane. It is quite

interesting to note t>at as the dipole enters the dielectric substrate.

its resonant Length-Dielectric Constant curve does not change shape

but moves to smaller values for the resonant length. This means that

curve 5.17 maintains Its shape as the dielectric constant

changes. For this reason it is expected again that the effect of each

new excited surface wave on the resonant length will be expressed as

Lr(c r)
a discontinuity in the derivative an' thE curve Lr f(E ) for

E r rr
rr larger than I0' will exhibit a similar variation as the one for th(

printed dipole (Figure 5.5). Figure 5.2f shows thE current distribution
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Figure 6.23: Input Impedance for a Dipole

Embedded in the Substrate with

b'=b/2.c,=2 and b=0.101S%,

Resonant Length LrO0.319\,
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Figure 5.24: Input Impedance for a Dipole

Embedded In the Substrate with

b'=b/ 2 ,cr=1O and b=0.1O16k.

Resonant Length 1r =0.I37\.
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Figure 6.25: Resonant Length vs. Relative Dielectric

Constant cr for a Dipole with b=0.1016%,

0--o Dipole on the Interface
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Figure 6.26: Current Distribution on a Dipole

Embedded in the Substrate with

bzb/2,b=0.1O16\e and L=O.65\c



o1 thL dipole of Figurc 5.22 with its length equal to 0.65 A° and for

two values of c (c 2, 10). The increase in the number of zerosr r

resulting from the increasing relative dielectric constant is, as in

the case of the printed dipole, characteristic of the substrate proper-

ties.

c. SUBSTRATE THICKNESS VARIATION

The dipole of Figure 5.22 will now be considered again. For this

dipole with a relative dielectric constant for the substrate equal to

2.35, the real and imaginary parts of the input impedance for three

different values of the substrate thickness are given in Figures 5.27,

5.28 and 5.29. These three values of b (0.1016 ) 0.25 ) and 0.46, . )

cause one, two and three surface waves to be excited. As shown in

Figure 5.30, the resonant length as a function of the substrate thick-

ness goes througl. a minimum in region I (one surface wave) and continues

increasing in regions II (two surface waves) and III (three surface
b Lr ( )

waves) with a step discontinuity in its derivative - at the

point where a third surface wave is excited. Assuming the same dcff-

nition of bandwidth as in section 5.2, one car deterinc its variatic.-

with respect to substrate thickness b. In addition th' resonant re-

sistance as a function of the same parameter is show-. i7. Figure_, 5.31

and 5.32. Fro. these figures one can see that the resonant resistanc

F r is monotonicallv increasing as 1, increases wit,. step discontinuities

in the derivative - at the points where a new surface wave is

excited. 7. bandvidth B' follows in shape th variation of R r b,:i

ex1,lVts ,ni- 1 larger slope. Fiire 5.13 shows the current distribuat~ic

of the dipole of Ficure 5.22 when I CJ.6 * . - 2.35 and b
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Figure 6.27: Input Impedance for a Dipole

Embedded in the Substrate with

b' b/2j,=2.35 and b=0.1016\.

Resonant Length L,=0.289\,
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Figure 5.28: Input impedance for a Dipole

Embedded in the Substrate with

.4 bD=b/2,,Er=2 .3 5  and b=0.25..

Resonant Length 1r =O.263\e.



Rr
(ohms)

3000-

2000-R

-2000-1 1 31 14.

b'-b/2.c,=2 .35 and b--0.46%.
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Figure 5.3 1: Resonant Resistance vs. Substrate Thickness

b for a Dipole Embedded in the Substrate

with b'=b/2 and t=2 .35
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Figure 5.32: Bandwidth 8W vs. Substrate Thickness

b for a Dipole Embedded in the Substrate
with b'=b/2 and c ,=2.35
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Figure 6.83: Current Distributionn on a Dipole

Embedded In the Substrate with

f,=2.35 b'=b/2 and L=0.65%.



0.1016 ) 0.25 Xo and 0.46 ).

Figures 5.34 and 5.35 show the current distribution as a function

of the length of the dipole (Figure 5.22) when b' - 2b/3, b - 0.1016 )o

and c r 2.35. The feed point is not located at the middle of the

dipole contrary to all the cases which were studied until now. The

distance of the feed point from the nearest end of the dipole 
is 1/4

of the dipole length.
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Figure 5.34: Current Distribution on a Dipole
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b'=b/2,cr =2.35 and Different Lengths
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Appendix A

INTEGRAL REPRESENTATION OF THF PRIMARY

SOL1 TION

As mentioned in Chapter 2, the primary solution is the particular

solution to the wave equation given by:

-jkrG = _J _ e (A.1)

px 4nk 2 r

It is desired to bring the representation (A.1) of Gd  into the fort
px

of superposition of eigenfLnctions n Since the cylindrical polar
n

coordinates r, d, z are involved, these eipenfunction.F wil" be in t-.c

form 131

in ±i I ~- z

, . = Jn ( : ) e ' ±'. 

.-
e

9. n

w.[erc = I(-x') + (v-v')] and are eigenvalues wl.ich for the cast

of an infinite cylinder with finite radius are restricted tc a dis-

crete spectrum. However, if $ - (as is the case herE,, ° haF a

continuous spectrur 0 < ) corresponding to the ur. -:te:' riu.

Also, fro- the eigenfunctions L only those Rrc used wtX. art in'e-

pendent of ; therefore n must be zero. From t '- disc sic'_ i: is

concluded that thE particular solution (A.1) may be p-:t in thc for-:

j, . i
J ~ ~C _: " A(- . - '  A"

u 4.-

r +:4(zl. "
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In equation (A.3) A(.)CU 7+1, is tht Fourier-Bessel Transform of the

function - and therefore Is given by
r

jzhI f -Jkr
J r

Equation (A.5) is easily simplified by considering z - h which gives

A() - j k 0 (A.6)

In (A.6) J(l) is replaced by its integral representation

J (X
=
) =2 r ej X Pc sw dw (A.7)

and the relation

A()) ~-~ f d

- 2r f -k+cos w (A.E)

results. The re-aining integration in (A.8) gives

A(') =
U

If equatio. (A.9) is substituted into (A.3) the following relation for

Cd  is obtainedpx f
d-z+h d (A. 10)

S Jo:) e u



DERIVATION OF TRYE COMPONENTS Cd an6 G

During the formulation of Pocklington's integral equation the

following two relations

Bz ;x

G d
.z_ . (B .2)

were obtained. By observing that -O - - -- one can write these tvoex X'

equations as follows:

dO = z dx' (B.3)az

;G 
d

d C --- dx' (B.4);z

or

G = f 7 d:- (15)

Cd = f z ex
Cdz dx' (E .

Equation (2.3L) in Chapter 2 yields, for h

G 2-I- (-E r ) COS", Jl07 €7 i r

6fth(u1) co.(ul(..

fI (; -, b)

By differentiating (E.7) witI respect tc - an' by changing the order

of integratior and differentiatior onc find:- te- fol]owin relation:

87



_u1.2 Cr J o JC(r) e oz 2 r 02

sinh (ub) cosh(ub) 2 d
fl (,b) • 2(X,b)

C d J ( )
ow, 0N 0 00 u z

(iCr) cos u o e o

0

si-nh(ubl cosh(u ), 2 d (B.8)
f 1 ( ,b) • f2(0 ,b)

From the relations

[(x-x') + (y-y') 2 (B.9)

an
X-Y

cos" - (B.10)

it is determined tha:

d dd - cos. (B.11)

an-'

d Jc('.) i d JC(:,. ) dx.'

d(;. ) ; dx:' d.

0 Jo ( : : )  (5 .12)

A substitution of (5.12) into (n.E) vield.- the fc'1o1ir relation

= :"=2-V " Jr

., ,1 _ c_ _.j u:. .

.C,! C 2 . t d 1. 3



Oilt fror (B.5) and (B.13) we have

(;=- -- UcrI 3(0 00 e-uoz u X
2? t 0oo o

sinh(ub) cosh(ub) l4
f 1 (,b) - X

In a similar manner

Gd - (11Jv ysinbtu.(b-h)]

2rk 2 rf X)

sinhfu(z+b))J(.5
f. b)

results.
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Ajpex C

UNIQUENESS AND EXISTENCE OF THE SOLUTION OF THE

FUNCTIONAL EUATION L (b)=(E x)

A. Uniqueness

Let it be assumed that, for the equation Lop (b)(E x), two

vectors J1 and J2 exist such that [42]

LOp(J) = (Ex ) and L(op() (E xX) (C.1)

A subtraction of one from the other yields the conclusion that

LO(J 1 -32) = 0 or L op() = (C.2)

where d is the solution to the homogenous equation LOp (J) = 0.

Because of the physics of the problem, with no excitation the

induced current on the dipole is identically zero and there-

fore d which gives J =J, Therefore the solution is

unique.

B. Existence

The homogeneous adjoint equation

L a 0 (c.3)
op

is considered with 3a in the adicint dorar. a I ). By the
cc

definition of the adjoint operator

* L (J, J > < J, La (3i) (C..)or op

or

* (Ex), 3 = - - (C.5)

9C.
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Equation (C.5) reduces to

< (EXX), a > - 0 (c.6)

Since it has been proved that the operator L is selfop

adjoint,

L =La (C.7)
op op

results.

Because of (C.7), equation (C.3) reduces to

L (?) = 0 (C.E)op

which was shown earlier to have a solution identically equal

to zero. Therefore equation (C.6) is satisfied, and thE

existence of the solution of the original functional equation

is concluded.
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-P-pend ixt

CONDITIONS IMPOSED BY THF OUTGOING-PROPAGATION-

CHARACTER REQUIREMENT

As shown in Chapter 2, both of the components of the Green's

Function in air include a factor eUoZ in their integrands. This

factor, together with the exponential time dependance factor takes

the forr.

a(z,t) - e-Uoz + 1,-t (D.i)

The transformation

u = j k cosw (wC, (D.2)
0

leads to the following relationshir for )

k sinw (D.3)
0

Assuming that w = + jv one can show that equations (D.2) and (D.3)

becon

= sir.- sin. * j V cos- cosh:- (D ,

) = k sin, cos';., + j k cos- sinhv: (D.5)O C'

Because of(D.4),equation (D,.) car. be put in the for-

C(z,t) j ["t - 'z cos , co : . coshv C -k z si - sinh (D.6)

In order to satisfv the outgoing character of thE propapatinp waves,

the followin, relation, mu.ct be satisfie&:

sir ,7- ir - ( (D.7)

52r.
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From (D.7), (D.8), and from the fact that the contour of integration

with respect to X is extended along the positive real axis it is obvious

that

sint • 0 (D.9)

sinhv > 0 (D.10)

cos I > 0 (D.11)

A consideration of inequalities (D.9) - (D.11) into (D.5) indicates

that the real and imaginary parts of the parameter A satisfy the

relations

Re [)., > 0 (D.12)

IM ().] 0 (D.13)
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Apenpd ix E

TFCHNIQUE FOR THEEXTRACTION OF THE SINGULARITIES

As mentioned in Chapter 4, the integration along the interval

[ko 1 k] faces the existence of a finite set of discrete essential sin-

gularities which with a surface wave character, affect considerably

the input impedance and radiation characteristics.

If it is assumed that S is the set of these singularities then

S is given by

S = Lxi/jxi= root of f ().,b) 03 V [xi= root of f2 (,,b) - 0)

and i = 1, 2, !.": (E.1)

A partition P [tn.1] of the interval [kok] is considered such that

... < xn $ n k: (E.2)

The integrals (4.32) and (4.33), wit- the )-integration extended fro-

k to k,, can be put in the form
0

t

n, r+3
z_,d'. f Y(b - ) J ( (E.3)
r ft t'

r

3 0-fxk d(.50~(: j = x (x) d ' ~ ' o ( " E '

t' - ,,( 1 ' ,.

or

k = / d>:(: r e " " E5

J (

Tr

X'4



with 4 r( 'b'C ) = -x ) f(o ,b,cr )  FJ o(r kj) (E.7)

Skj (x ,b, )
In (E.6) the quantityr -r is added and substracted giving

x
r

I !~fr+1 4"-j(Ib E ) ' ~kiI "- -- X x--+

r=O f r
r

S tr+1 ckj(xr b,E r

+ dX r (E.8)

r-OJt > -x r

or

*N ftr+1 kJ(),b , xkJ(xb ) +

I ir r) r(Xr ~r +
r r

Str~

kif r+1d'r. (. 9 )z- kr(xr~b tr)Jt_
r= f

Fror equation (E.9) the integral car be put in the fir,a for..

N t r+l k k'
% f trc kJ(),b,cr) - CJ(xrbt

I z ..= d' r r r r r

r-O -) rr

+ jy (b [Ln I tr+'-- (
xr - tr

in thE equatior abov, the integrands
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kJ(x,b,cr) kJ(xrjb,C

) -x
T

are slowly varying functions in the intervals Etr, tr+ 1] and the inte-

grals can be evaluated using a Gausslan-quadrature integration 
method

with four fixed points [36].
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BANDWIDTH OF A DIPOLE PRINTED ON OR

EMBEDDED IN THE DIELETRiCljSTI

We consider the dipole by its equivalent circuit (Fig. F-i).

The impedance seen by the voltage generator is given by:

zi =R + j (L -- ) (F.l)
in W

With X being the imaginary part of the input impedance, equation (F.l)

can be written as follows:

Zin R + j X (F.2)

with
1

Y =,L - I

A differentiation of both sides of equation (F.3) with respect tc

frequenc':" ,ields the relation

dL = L[i + ( -r)2] ( .'

w ith, the resonant frecuency of the dipc'c, g:'\: :
r

1 ( ..

r

With L L in equation (F.4), the derivative of th- reactanc wit.

respect to frequency at resonance is given tv

d"

I anf I 2 > Lr) are the 3 dF pcirt, on thi response of th(
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tuneed circuit (Fig. F-1) the quality fartor Q satisfies both the

relat ions

Q r _ (F.7)
W2 -W"1

and
' LQ r_ (r.8)

Q R

From equations (F.7) and (F.8) the relation

2- 1 =  (F.9)
LL

results.

If one substitutes (F.6) into (F.9) and if the following bandwidth

(B:.:) definition is assumed

,= -. (F. )
L
r

then thc relation

dy!

r

is concluee wft'.

dY d
d, 2- L Lr d(-) L

S r

where c is thc velocitv of light in thE mediur surrouneing the dipole

and L is tlc lenzt . of the dipole. Fro- equatic.. (F.21) an- (-.' 2

it can b fo'-' t.ra t., b id - . i giv-. -',

I d. (.13)r e- !.,

9F



Figure F-1: Equivalent Circuit of a Dipole

Printed on or Embedded in the

Substrate



whtere Ir is the Resonant LengtI, normalized with respect to free space

wavelength.




